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Fig. S1. Signal-to-noise ratio is lower in cortex than upstream regions. In the main text, it was suggested that signal-to-noise is lower in primary sensory cortex compared
with the upstream regions, closer to the sensory periphery, that provide sensory input to cortex. Here we show quantitatively that this is true for the visual system and olfactory
system data that we analyzed. [Left] Each solid line is a distribution of SNR values for the 10000 randomly chosen pairs of V1 neurons analyzed in the main text. Each dashed

line is a SNR distribution for the corresponding 10000 pairs of LGN neurons. Here we took the 2x2-population-level SNR to be
√
µT Σ−1µ, where µ is a two-element vector

of response differences (response to stimulus type A minus response to stimulus type B) and Σ is the response covariance matrix for the two neurons. Each color represents
an example from a different mouse and a different pair of stimuli. The ’stim type’ number in the legend refers to a specific pair of grating orientations or spatial frequencies as
labeled in the black grids. [Right] Same as the left, but based on the olfactory system. Note that for both the visual and the olfactory systems, the solid distributions indicate a
lower typical SNR in cortex compared to the upstream regions (dashed). Also note that this set of example mice and stimulus types is the same as those shown in Fig 4B,D,F
and H, with the same color code.
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Fig. S2. Cross-validation of DCC1. Like many other decoding algorithms, our proposed CC1 decoding can generate artificially high values of decoding accuracy if there are
too few stimulus trials or if response dimensionality is too high. In the context of our work, response dimensionality is simply the number of neurons from each population. To
account for this possibility, we did a 10-fold cross validation to verify that our measured values of DCC1 were reliable. For a given 2x2 population, we used 9/10 of the stimulus
trials to calculate CC1 directions and determine the optimal decoding threshold on the CC1-projected responses. Then, we used the same projection and threshold to calculate
decoding accuracy for the held out 1/10 of trials. We repeated this for the 10 unique folds of training and hold-out trials and finally averaged the 10 decoding accuracy values
across the 10 folds. These averaged decoding accuracies are reported here compared to the original decoding accuracies reported in the main text. Note that the cross
validated DCC1 values are strongly correlated with the original values, which means they are reliable. However, it is clear that for the olfactory data (right), which had only 15
trials per stimulus type, original DCC1 is more prone to over estimation compared the cross validated DCC1. The visual system data (left) included 42 trials per stimulus type,
which resulted in less bias, i.e. a better match between original and cross validated DCC1. The dashed line (slope unity) marks equality between original and cross validated
DCC1. Each point represents one of 10000 randomly chosen populations. The dark line and shaded area indicates the median and quartiles of the points, respectively. Points
are displayed with 20% opacity, so that density of points is clearer. [Bottom panel] Finally, we performed a similar 10-fold cross-validation for 3x3 and 4x4 populations from the
visual system (see Methods in main manuscript) and found reliable results like the 2x2 case.
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2x2 populations
β1 β2 R-square
4.9+-0.7 -0.7+-0.2 0.6+-0.03

3x3 populations
β1 β2 R-square
6.1+-0.5 -0.7+-0.1 0.71+-0.02

Fig. S3. Regression results. For the regression mentioned in the Results, we employed a generalized least squares (GLS) method to fit the following regression equation:
y = β1x1 + β2x2 + ε, where, y represents the normalized deviation from optimal decoding (∆ in the main text), and x1 and x2 correspond to the independent variables
Cxy and RCC1, respectively. Here we report the mean ± standard deviation across animals.
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Mathematical Results13

Introduction. We consider the case of two populations of neurons whose responses to two stimuli, A and B, are correlated both14

within and across populations. We assume the responses to each stimulus can be described by a multivariate Gaussian, i.e.15

P (rX , rY |S) = N
([

µX,S
µY,S

]
,ΣS

)
,16

where S = {A,B} , µX,S ∈ Rm, µY,S ∈ Rn, and ΣS is a symmetric, positive-definite matrix of size (m+ n)× (m+ n). Here X17

and Y refer to two populations of neurons which are both responsive to A and B, containing m and n neurons respectively; for18

example, Y may be a cortical region and X a pre-cortical region which supplies afferent input to Y. Without loss of generality,19

we simplify notation by shifting the mean responses so that µX,A = 0, µY,A = 0; thus, we can drop the stimulus subscript on20

the mean vectors and use µX = µX,B and µY = µY,B .21

We next consider how to decode the stimulus, using only the responses within each population. We assume that the
covariance matrix is the same for both stimuli: i.e. ΣA = ΣB =: Σ. In this case the optimal decision boundary is given by a
hyperplane in Rm or Rn; equivalently, by a one-dimensional projection of the response vector. The decision boundary is given
by (for example) u ∈ Rm such that uTΣ−1

X µX = 1
2µ

T
XΣ−1

X µX + log P (B)
P (A) , (Here, ΣX and ΣY are the marginal covariances in

populations X and Y respectively.) Therefore, the projection vector must be the normal vector to this plane; i.e.:

vX = Σ−1
X µX , vY = Σ−1

Y µY [1]

in populations X and Y respectively. Alternatively, observing that vT rX |S is a one-dimensional Gaussian with

E[vT rX |S] = vTµX,S , Var[vT rX |S] = vTΣv, [2]

we can derive the same outcome by maximizing the signal-to-noise ratio; i.e. vX = argmin
(√

vT Σv
vT µX

)
. From the perspective22

of linear discriminant analysis, this maximizes between-class (where “class”=stimulus identity) variability while minimizing23

within-class variability (1).24

When cross-region noise correlations are absent, CC1 is a perfect decoder. We now compute the projection directions associ-25

ated with canonical correlation analysis (CCA). Given two sets of zero-mean observations from X and Y, the goal of CCA is to26

find the linear projections of the observations that are maximally correlated (2). This technique uses the full stimulus-averaged27

population response; however, we will show that under certain conditions, the maximally correlated direction from CCA28

coincides with the optimal decoder. Assuming P (A) = P (B), the covariance structure within each population is29

ΣXX = 1
4µXµ

T
X + ΣX ; ΣY Y = 1

4µY µ
T
Y + ΣY30

while the stimulus-averaged covariance matrix between populations X and Y is

ΣXY = 1
4µXµ

T
Y + ΣC [3]

Here ΣX , ΣY , and ΣC are the covariances within and across-populations: i.e.31

Σ =
[

ΣX ΣC
ΣTC ΣY

]
32

We now seek to find the directions which maximize correlation across the population; that is33

RCC1 = max
a,b

aTΣXY b√
aTΣXXa

√
bTΣY Y b

34

We denote the vectors that achieve this maximum as vX,CC1 and vY,CC1 respectively; i.e.35

vX,CC1, vY,CC1 = argmaxa,b
aTΣXY b√

aTΣXXa
√

bTΣY Y b
36

The vectors vX,CC1 and vY,CC1 can be obtained by finding the principal eigenvectors of DX and DY respectively:

DX = Σ−1
XXΣXY Σ−1

Y Y ΣTXY ; DY = Σ−1
Y Y ΣTXY Σ−1

XXΣXY [4]

and the corresponding eigenvalue is the correlation (RCC1) squared: that is,37

DXvX,CC1 = λvX,CC1 ⇔ RCC1 =
√
λ38

We note that the cross-covariance matrix ΣXY has two contributions, one reflecting signal correlations ( 1
4µXµ

T
Y ) and the39

other noise correlations (ΣC). The latter reflects trial-to-trial correlations which are not reflected in the mean response. We will40

now show that when noise correlations are absent (ΣC = 0), the principal CCA direction coincides with the optimal decoding41

direction. Without loss of generality, we focus on DX ; parallel statements hold for DY .42

43

Lemma 1: If ΣC = 0, then DX is a rank 1 matrix.44

45
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Proof. It is well known that the rank of a matrix product is bounded above by the minimum rank of the matrices; i.e.46

rank(AB) ≤ min(rank(A), rank(B)). From Eq. (3) ΣXY is the sum of two matrices, the first of which is rank 1; if ΣC = 0,47

therefore, the sum is rank 1 as well. Therefore any matrix product that includes ΣXY has rank at most 1.48

Theorem 1: If ΣC = 0, then the correlated (non-zero) eigenvector of DX coincides with the projection direction which is49

optimal for decoding.50

51

Proof. Recall that Eq. (1) shows that vX ∝ Σ−1
X µX . We will show that vX is also an eigenvector of DX .52

Consider the formula for DX :53

DX = Σ−1
XXΣXY Σ−1

Y Y ΣTXY54

The cross-population correlation matrix ΣXY is rank 1 and range(ΣXY ) = Span {µX}. Therefore, range(DX) = Span
{

Σ−1
XXµX

}
.55

Next, we write Σ−1
XX in terms of Σ−1

X . Using the matrix determinant lemma, and noting that56

ΣXX = ΣX + uuT57

where u = µX/2,

Σ−1
XX = Σ−1

X −
Σ−1
X uuTΣ−1

X

1 + uTΣ−1
X u

[5]

= Σ−1
X − Σ−1

X u
(

uTΣ−1
X

1 + uTΣ−1
X u

)
[6]

The second term already maps into Span
{

Σ−1
X µX

}
, regardless of what vector is multiplied on the right. In conclusion,58

range(DX) = Span
{

Σ−1
X µX

}
; i.e. DXvX ∝ vX .59

By using Eq. (6) (and the analogous simplification for Σ−1
Y Y ), one can confirm that the corresponding eigenvalue is

λ =
(

s2
X

4 + s2
X

)(
s2
Y

4 + s2
Y

)
[7]

where sX =
√
µTXΣ−1

X µX and sY =
√
µTY Σ−1

Y µY are the signal-to-noise ratios for the X and Y populations respectively.60

61

Theorem 2: If ΣC = 0, then any other eigenvector of DX gives chance-level decoding.62

Proof. If vTµX = 0, then ΣTXY v = 0 and therefore DXv = 0. Therefore v is an eigenvector of DX with eigenvalue 0. But then63

E[vT rX |A] = E[vT rX |B] = 064

i.e. the stimuli A and B cannot be discriminated.65
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